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Abstract

In this work, recent advances in the use of nonlinear time series analysis for structural health

monitoring are extended to incorporate multivariate data. Structural response data recorded at

multiple locations are combined using a multivariate time delay embedding in order to recon-

struct the structure's dynamical attractor. Using this approach, a global phase space represen-

tation of the dynamics may be realized for spatially extended systems. A new attractor-based

metric, chaotic ampli�cation of attractor distortion (CAAD), is then introduced as a damage

sensitive feature. The approach is implemented using data acquired from a composite beam,

bolted at either end to steel plates. Degradation to the system is introduced as a loosening of

the bolts at one end of the structure. Results based on multivariate attractor reconstruction

show a clear ability to detect both the presence and magnitude of damage to the connection.

Comparisons are then drawn between this approach and one where the same feature is ex-

tracted from attractors reconstructed using data acquired from the individual sensor locations.

These features are combined \post-extraction" using a linear discriminant coordinant analysis.

Performing the analysis separately at the individual sensor locations results in a signi�cant

reduction in discriminating power.

1 Introduction

Vibration-based Structural Health Monitoring (SHM) has arisen as one possible approach to the

problem of structural damage identi�cation and localization. The structure of interest is excited

through either ambient or applied loading and the resulting time series analyzed for damage-induced
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changes to the dynamics. Much of the research in this �eld has therefore focused on the problem

of feature extraction, which attempts to answer the question: what metric computed from that time

series accurately quanti�es changes to the dynamics? Ideally the chosen feature will be able discern

the magnitude, type, and location of the degradation. This problem belongs to the general class of

inverse problems where the practitioner attempts to infer something about a structure through the

system's vibrational response.

The feature extraction problem has largely tended to focus on a modal analysis of the response.

The structure is excited with a broadband input and the response analyzed for changes in frequencies,

mode shapes, damping, exibility, etc. [9, 11, 5, 34, 6]. Other non modal-based features have

included cross-correlation [25], auto-regressive approaches [31, 4], neural networks [2, 37], time series

dimensionality [17, 35], wavelets [26, 13, 27] and genetic algorithms [22]. Many of the studies

conducted to date have focused on extracting the relevant information from a single sensor. Even

in the case where multiple sensors are present, the features extracted from the corresponding time

series are often analyzed separately. Recent e�orts have been directed toward treating the problem of

damage detection in a multivariate framework, that is, looking for combinations of features (gleaned

from di�erent locations) capable of assessing the health of a structure [7, 31].

This work represents an e�ort to combine information from di�erent spatial locations prior to

the feature extraction. The approach builds on earlier e�orts aimed at transforming the feature

extraction problem into one that lends itself to attractor-based analysis. Recent studies have shown

that exciting a structure with a chaotic input can force the system (structure + forcing) dynamics to

occur on a low-dimensional attractor. Various attractor-based features have been highly successful

in determining both the presence and magnitude of several forms of structural degradation (see

[23, 19, 24]). Here the attractor reconstruction is generalized to incorporate multiple time series.

Time series collected at each of the sensor locations are analyzed using a recently developed multi-

dimensional false nearest neighbors approach to choose the number of delay vectors required from

each of the sensors. The time series are then combined using the prescribed multivariate time-

delay embedding in order to produce a reconstruction of the system's attractor. The resulting
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representation of the system dynamics is then analyzed for damage induced changes using a new

feature, chaotic ampli�cation of attractor distortion, CAAD. The approach is demonstrated e�ective

in detecting both the presence and magnitude of degradation in a composite/steel joint. We compare

the technique to results obtained by performing the same analysis on attractors reconstructed from

the individual sensors. The same feature (CAAD) is computed at each location and combined a

posteriori using a linear multivariate discriminant analysis. Results clearly indicate that in this

instance there is a large advantage to combining time series information before proceeding with the

feature extraction.

2 Attractor reconstruction from multivariate data

Assume a dynamical system evolving according to

_x = F(x) x 2 Rd: (1)

The state of the system at any point in time is speci�ed by the vector x in d-dimensional phase

space. An initial condition x(0) will, under the action of F, asymptotically approach the system's

dynamical attractor , a subset of phase space which may be thought of as a geometric object to

to which all trajectories belong. The central goal of an attractor reconstruction is to qualitatively

preserve the dynamics of the "true" underlying attractor by reconstructing the solution of Eqn.

(1) i.e. re-create the state vectors x. In experiment one will typically not have access to each of

the system's state variables and must instead rely on a set of powerful mathematical embedding

theorems to reconstruct the missing information qualitatively. Based on the early work of Whitney

[36] and later by Takens [32] and Sauer et al. [29] it can be shown that delayed copies of the original

time series may be used to form an embedding

X � x(n) = (x(n); x(n+ T ); � � � ; x(n+ (m � 1)T )) ; (2)

which faithfully represents the geometry of the system which exhibited the dynamics in the time

series.

By taking advantage of the coupling that occurs naturally in the dynamics, informationpertaining
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to the unobserved variables may be extracted from a single x(n). This remarkable result has formed

the basis for an entire class of attractor-based system identi�cation tools in the broad �eld of

nonlinear time series analysis. Theoretically the choice of delay is unimportant, however in practice

the choice may have important consequences. As the delay approaches T = 0 the resulting pseudo-

state vectors will be identical while for large delay the resulting vectors may become completely

unrelated and destroy any connection to the underlying dynamics. In order to minimize redundancy

the delay is often selected in accordance with a pre-de�ned drop in the autocorrelation function

or as the �rst minimum of the average mutual information function [10]. Here, the delay is taken

as the time at which the autocorrelation loses 2=3 of its value. Multiple time series taken from

di�erent sensors often exhibit a broad range of autocorrelation delay times. Because redundant

information is less harmful than the omission of information in a time series embedding, we compute

autocorrelation separately for each time series and use the minimum time (among all time series)

in which autocorrelation decays to 1/3 of its value. Although the �rst minimum of the average

mutual information function is often used to �nd embedding delay, it has been shown that mutual

information can occasionally give incorrect information, especially in the context of multivariate

embedding [28].

Improper selection of the embedding dimension m can also produce a poor reconstruction. The

goal in selecting m is to minimize the number of crossings of reconstructed trajectories due to

embedding in too small a space. If information in higher dimensions is projected onto too few

coordinates, the trajectories in the reconstructed space will not reect the dynamics correctly. For

example, consider a helix embedded into a two-, rather than a three-dimensional space. In two

dimensions the helical trajectory is reduced to a cycle and information concerning the expansion of

the trajectory in one direction is lost.

If one knows the fractal dimension df of the system, recourse is made to the theoretical criteria of

Sauer [29] that m > 2df . In most cases such information is not available and an empirical approach

is taken. The False Nearest Neighbor technique of Kennel and Abarbanel [16] works by slowly

\unfolding" the attractor, that is, increasing the embedding dimension starting from m = 1 and
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searching for the value at which the number of false projections reaches zero. A false projection is

de�ned as a relative separation in distance greater then some pre-de�ned threshold as a trajectory is

extended from m to m+ 1 coordinates. Again, think of the example of the helix; points in separate

cycles are on top of each other and thus near neighbors in two dimensions. As the embedding

dimension increases to three they are no longer neighbors. Those would be counted as false near

neighbors as the dimension increased from 2 to 3. If the dimension is increased from 3 to 4, no points

that are neighbors in 3 dimensions fail to be neighbors in 4 dimensions; 3 dimensions is therefore

suÆcient. The false nearest neighbors approach has become the standard approach for selecting an

embedding dimension for a single time series response and has also been used in various forms to

select embedding dimension in multivariate time series analysis [20, 21, 3].

In the instance of multiple observations, as often occurs with spatially extended systems, the

process remains largely the same. However, in the multivariate case the false nearest neighbors

approach must incorporate delayed copies of all time series data. We denote the multivariate time

series xi(n) as the ith time series sampled at discrete time n. In order to �nd an appropriate

embedding dimension, we performed a multivariate false nearest neighbors [15, 3] examination.

Because the data from the sensors were strongly coupled, as opposed to the weakly coupled data in

[3] we performed additional false nearest neighbors examinations in order completely investigate the

possible dimension of the attractor. We begin with one coordinate from each time series (for our

data, a beginning dimension of 5) (x1(n); x2(n); : : : ; x5(n)) and then add delay coordinates xi(n+T )

from each time series, one at a time, in this case up to 3 delays (T; 2T; 3T ) per time series. In each

case, we added delays from additional time series whether or not the previously added delays showed

an increase in false nearest neighbors (this is in contrast to [3]). Thus, we were able to see the changes

in the number of false nearest neighbors over the entire range of possible delay embeddings. Using

this data, we determined that a suÆcient embedding dimension was 10, using 2 delays per time

series in our multivariate embedding (see, e.g. [21, 3]). A vector at time n using this scheme is

constructed as follows:

5



x(n) = (x1(n); x2(n); : : : ; x5(n); x1(n+ T ); x2(n+ T ) � : : : ; x5(n + T )): (3)

A schematic of the false nearest neighbors investigation scheme can be found in �gure 1. For

clarity, some of the investigations have been omitted from the table. Note that the false near

neighbors are computed as dimension is increased from the beginning dimension. As in the univariate

false nearest neighbors, if the number of false near neighbors going from the lower dimension to the

next higher dimension is low, the lower embedding dimension is suÆcient. Since it is possible for

one sensor's time series to include information that another time series does not, we fully explore

all output from the scheme in order to determine a suÆcient embedding dimension.

The next section assumes a reconstructed attractor based on either single or multivariate obser-

vations.

3 Chaotic Ampli�cation of Attractor Distortion

One of the hallmarks of a chaotic system is that the trajectories of two nearby points will eventually

diverge; this is the sensitive dependence on initial conditions. In a stable �ltered chaotic system, the

expansion of the drive signal governs the evolution of trajectories; the characteristic exponents of the

�lter (real parts of the logarithms of the eigenvalues) must be negative (contracting). However, there

is at least one positively expanding direction in the chaotic driver. Thus if we take two di�erent

�lters of the same chaotic drive signal, the expansion in both, governed by the expansion of the

drive, is the same.

In our system we excite two di�erent structures with the same chaotic signal. These structures

act as stable linear �lters of the signal. Although it is not possible to measure the direct dynamical

e�ect of di�erent �lters on a chaotic signal because of the stability of the �lter mentioned above, the

geometry of two attractors will di�er if the �lter changes even with an identical excitation. However,

if the change in the �lter is small, geometric changes may not be statistically detectable. We exploit

the sensitive dependence in order to amplify the small geometric di�erences that we may see in the

two di�erent attractors.
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We also exploit the fact that although there is some noise inherent in any physical measurement,

the characteristics of the linear �lter provided by the structure do not change unless the structure

itself changes. Since we are studying the steady-state of the system rather than transients, we can

expect that attractors reconstructed from identically �ltered signals should be essentially geometri-

cally identical. If we consider a representative point on one attractor, and �nd its nearest neighbor

on a geometrically identical attractor, the points will be close. These close points will have tra-

jectories that will remain close for at least a small amount of time; they will shadow each other.

If two attractors are not geometrically identical, the nearest neighbor to a point on one attractor

will be farther (though perhaps not statistically detectably so) from the point. However, these two

trajectories will diverge sooner than the trajectories of the points that were close. This divergence

is caused by the drive signal's ampli�cation of small distortions in attractor geometry after several

time steps.

This situation is entirely analogous to the so-called \buttery e�ect." Imagine the ability to

measure one scenario with a buttery and an otherwise identical scenario without the buttery. Dif-

ferences in the scenarios at the time of a movement of the buttery's wings are nearly undetectable.

However, after several hours, some changes could be evident in the steady-state of the system. It is

this evolved di�erence that we are using to identify changes in the geometry of the state space.

We call the number of time steps used to evolve the trajectories the shadowing time. The

shadowing time is determined by examining trajectories on attractors that are known to exhibit

identical dynamics, such as those from several identically excited undamaged or pristine structures.

The shadowing time is calculated as the number of time steps within which all trajectories stay

within a given multiple of the distance between trajectories at time 0, with a maximum of 10 time

steps. Theoretically, the sensitivity of this method could be adjusted up or down by varying the

number of time steps in the shadowing time, but in our experiments the shadowing time was kept

constant.

In order to perform this test based on the di�erences in evolved trajectories, we choose a �ducial

point from one of the attractors. We then �nd the nearest neighbor to this point on the other
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attractor. We note with incremental di�erences in the geometry, the distance of the nearest neighbor

will increase with increased change in the �lter. We follow the trajectory of the initial points on

both attractors, and measure the distance of one trajectory to the other as the trajectories evolve.

We then record the distance from one trajectory to the other after an appropriate number (the

shadowing time) of time steps . This is the chaotic ampli�cation of attractor distortion(CAAD) for

this representative point. We repeat this for a set of representative points on the attractor, and

record the distribution of CAAD values. We compare distributions of the CAAD metric between

attractors that are known to exhibit identical dynamics to CAAD distributions between attractors

which we conjecture to exhibit di�erent dynamics due to damage.

Typically, we compute many CAAD metric distributions between attractors from pristine or

undamaged structures' responses. To assess damage, we then compute (several instances of) the

CAAD metric between the attractors from an undamaged structure's response and attractor from

the response of a structure that we suspect is damaged. In this method, the attractors from the

responses of the undamaged structures provide the model for the system. Distortion of the model,

which we measure with the CAAD metric, indicates damage or change to the structure.

4 Statistical Considerations

The problem of assessing damage based on a collection of feature values is inherently one of statistical

pattern recognition [8] and can be approached on several levels of sophistication. For this assessment,

we collect a set of features coming from an undamaged structural response. We then may ask if

subsequently collected features are part of an \undamaged" set or part of a statistically di�erent,

presumably damaged, set? The next level of sophistication requires that the features be classi�ed as

coming from one or more di�erent damaged conditions i.e. determine the magnitude of the damage.

Further classi�cation schemes may possibly indicate type and/or location of damage but here we

are concerned with detecting the presence and the magnitude of the damage.

A collection of Nm CAAD values extracted from time series coming from one of Nd damage levels

is denoted �ij i = 1 � � �Nm j = 0 � � �Nd. The j = 0 set of features corresponds to the undamaged
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or baseline feature set. Each of the j collections is coming from some unknown distribution. These

distributions may be transformed to Gaussian by using a resampling or bootstrapping procedure

and invoking the central limit theorem [18]. Some number of elements from distribution j, call this

�j, are chosen at random and their mean computed. Repeating the process produces a collection of

Nm means which, according to the central limit theorem, will approach a normal distribution as the

sample size (number of elements randomly selected from �j) becomes large. Con�dence intervals

for the mean CAAD value may then be assigned as

UCLj = �j + Z�=2�j

LCLj = �j � Z�=2�j ; (4)

where �j ; �j are the means and standard deviations for the resampled data at damage level j and

� represents the prescribed level of con�dence. Here we take � = 0:05 corresponding to a value of

Z0:025 = 1:96. The CAAD values obtained by comparing the undamaged data to another undamaged

data set produces the baseline set of feature values. CAAD values from data sets that lie outside

UCL0; LCL0 indicate damage at the 95% con�dence level.

As described in the previous section, computation of the CAAD metric involves combining all

of the sensor data into a single attractor before the algorithm is implemented. However, the same

algorithmmay be applied to data coming from each of the sensors individually. Denoting the number

of sensors by Ns, the features values are now given by the Ns-vector �ij where boldface denotes a

vector. Con�dence intervals for each element of these vectors may be formed individually using the

process just described. A better solution, however, is to use some combination of the feature values

to optimize the discriminating power. One frequently used approach is to search for the optimal

linear combination of feature values for discriminating between several di�erent classes (damage

levels) using multiple observations. The goal is to �nd a vector of coeÆcients a = (a1; a2; � � � ; aNs)
T

which maps a set of Ns sample means onto Nd independent intervals via the transformation

~�ij = a�ij (5)

where each of the ~�ij is a scalar reecting the diagnosis, i.e. which damage scenario has occurred.
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Choice of the coeÆcients is made by minimizing the resulting within-group variance (keeping the

distributions of the ~�ij narrow) while maximizing the between-group variance (maximizing the

distance between the distributions of the ~�ij). Let ��j be the mean feature value extracted for the

jth damage level (within group mean). Let �� be the global mean, averaged over all damage levels.

Following the derivation given by Seber [30] we de�ne

W =
1

NmNd

NdX

j=1

NmX

i=1

�
�ij � ��j

� �
�ij � ��j

�T
(6)

as the in-group portion of the covariance matrix and

B =

NdX

j=1

1

Nd

�
��j � ��

� �
��j � ��

�
(7)

as the between-group portion. Note that both W and B are Ns � Ns matrices. Choosing the

coeÆcients to meet the previously stated objectives (minimize in-group variance, maximize between-

group variance) can be accomplished by maximizing the ratio

R(a) =
a0Ba

a0Wa
: (8)

This is recognized as the familiar eigenvalue problem

W�1Bar = �rar (9)

producing r = 1 � � �Ns di�erent sets of discriminant coordinates (eigenvectors) and the corresponding

eigenvalues �r which relate the e�ectiveness, or discriminating power of the ar. The collections of

feature values at the individual sensors may then be transformed according to Equation 5 using any

of the r sets of coordinates. Con�dence intervals for the transformed feature values are then assigned

in the same fashion as for the multivariate attractor-based approach.

5 Experimental Procedures

The approach was tested on a composite beam structure, bolted at either end to two steel plates as

shown in Figure (2). The beam dimensions were 1:219 m. in length � 17:15� 10�2 m. in width

and 19:05 � 10�3 m. thick. Each of the end plates were made from stainless steel and measured

10



20 � 10�2 m � 20 � 10�2 m � 20 � 10�3 m. Two 4 � 1:905 cm thick bolts measuring 8:89 cm in

length were used to fastened the beam to the steel frame. Each of the bolts were instrumented thus

allowing for direct measurement of the axial force in the connection. The beam was manufactured

using a quasi-isotropic layup consisting of (0=90) and (�45) .608 kg knit EGlass fabric. The speci�c

layup is [(+-45), (0/90)]6S meaning there are six sets of (+-45), (0/90) plies stacked on top of each

other in the �rst half of the laminate. The "S" is used to denote a symmetric laminate meaning

that the other half of the laminate is six sets of (90/0), (-+45) plies stacked on top of each other.

Excitation was provided by means of a B&K electrodynamic shaker located at the mid-span of the

beam and oriented such that the stinger was pressing down on the beam (see Figure 2). In addition,

an OMEGA LCFD-25 load cell was placed in-line with the stinger allowing for the input force to

the beam to be recorded.

The system chosen for the excitation was the chaotic Lorenz oscillator, given by the three �rst

order equations

� _z1 = 16 (z2 � z1)

� _z2 = 40z1 � z2 � z1z3

� _z3 = �4z3 + z1z2: (10)

Each of the state equations is multiplied by a constant, �, allowing for both the frequency content

and the LEs to be easily adjusted. While other chaotic oscillators may be used to control the

dimension of the structural response, this particular oscillator possesses characteristic time scales

commensurate with many structures. Figure (3) illustrates the power spectral density of the �rst

state variable, z1, for several values of �. Each plot shows the power spectral density of the �rst

state variable z1. In addition, there exists a large disparity between the magnitudes of the positive

and negative LE, a desirable property in controlling the dimension of the structure's response.

Structural response data were collected at �ve di�erent locations, four along the center of the

beam and one located on the steel plate at the degraded joint using �ber Bragg grating (FBG) strain

sensors. These are labeled Sensor A through Sensor E respectively and are shown schematically in

Figure (4). Details of the strain sensing system may be found in [33]. Damage to the system is
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introduced as a degradation to the connection strength at one end of the beam (see right panel of

Figure 2). The two bolts (A,B) are slowly loosened from an initial clamping strength of 44:48 kN

to :8896 kN. Experiments are performed at each of ten di�erent values of axial load shown in �gure

5. An experiment consists of �ve runs where a run is de�ned as exciting the beam with the Lorenz

output and collecting a total of 50; 000 observations at a rate of 850Hz. Multiple runs were collected

at each damage level in an e�ort to assess repeatability and generate a larger database of features

for subsequent statistical analysis. Figure 6 shows a sample of the driving signal, the reconstructed

driving attractor, and a sample attractor reconstruction based on the response at sensor B.

6 Results

The autocorrelation function was computed for each of the �ve time series, measured from the

structure in the undamaged condition. Delays for each of these series, as indicated by a 2=3 drop in

autocorrelation were found to be 15 time steps. Based on these delays, the multivariate false nearest

neighbors approach described in section 2 was employed. This results suggests that the attractor

reconstruction incorporate 2 delay copies of all the signals resulting in a 10 dimensional attractor.

As mentioned previously the resulting object is most likely over-embedded as there are clearly some

redundancies in the various time series. However, the cost associated with over-embedding is purely

computational. Under-embedding can skew results, as mentioned in section 2.

We reconstructed the attractors for the fully torqued scenario and determined that an appropriate

shadowing time was 10 time steps. We found that most of the trajectories in one trial of this scenario

stayed within 10 times the original separation between initial conditions; recall from the de�nition

of CAAD in section 3 that this is the criterion we de�ned for choosing shadowing time. We used 100

representative points on each attractor. We performed 10 trials for the fully torqued scenarios in

order to obtain a probability distribution function for shadowing distances in the baseline attractor.

We then performed the CAAD test between the attractors reconstructed from the fully torqued

scenarios' data and those reconstructed from the other scenarios' data, again using 10 separate runs

per experiment. We then compiled the probability distributions using the resampling procedure
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described in section 4 and compared them. Figure 7 shows the progression of mean CAAD value

with damage. Con�dence limits based on � = 0:05 for the undamaged feature values are highlighted

in gray. The CAAD metric is able to clearly resolve changes to the structures dynamics at the 26:69

kN axial load level. This represents a 50% improvement over previous e�orts to detect the presence

of damage in this same structure. The approach detailed in ([14]) using nonlinear prediction error

was able to resolve change at the 17:79 kN level while an AR-based modeling approach featured in

that same work could only resolve damage at 13:34 kN level. Furthermore, this particular metric

is able to give information pertaining to the magnitude of the damage. Based on the con�dence

intervals damage may be classi�ed in one of four statistically independent regions: � 20:016� 26:69

kN, � 8:006� 17:79 kN, � :8896� 4:448 kN, and < :8896 kN. Not only can the presence of axial

load loss be detected, but the magnitude can be discerned as well. The ease with which such a

mapping is obtained is in part due to the monotonic increase in feature value. Trends in features

that are non-monotonic can produce obvious diÆculty in attempting to separate out the damage

class to which the corresponding features belong.

As a comparison, we also computed the CAAD feature on each of the individual attractors,

reconstructed from the time series collected at each of the �ve sensor locations. The �ve sets of

feature values were then used to perform the discriminant coordinate analysis described in section 4.

Of the �ve resulting sets of discriminant coordinates, only two resulted in an ability to classify any of

the damage scenarios (certain discriminant coordinates corresponding to low �r values are typically

produced and are not able to separate many, if any, of the classes). The original progression of feature

vectors, along with the two best sets of transformed feature values obtained from the discriminant

analysis are shown in �gure (8).

The top row of plots show the performance of the individual sensors while the bottom two show

the combined discriminating power. Discriminant coordinates can at best distinguish the last four

damage scenarios in any statistically meaningful sense. The failure of this type of analysis is not

surprising considering the inability of the individual sensors to resolve the damage. For this particular

experiment there is a clear advantage in combining time series data "up front" during the attractor
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reconstruction process. Such an approach incorporates all of the sensor information and therefore

represents a more complete model of the system dynamics. While there is a computational cost

associated with handling higher dimensional data, it can be minimized through implementation of a

fast neighbor searching routine such as the kd-tree [1] and prioritized spatial search [12] algorithms

used here .

7 Conclusions

We have described and implemented a new approach to multivariate structural health monitoring.

The approach works by forming the phase space of the structure using delayed components from

each of the measured structural response time series. Using this method we were able to detect

statistically signi�cant changes in the structural vibration at 26:698 kN axial load representing 60%

of the fully clamped condition. Furthermore it was shown that a there exists a clear advantage to

combining structural response data before the feature extraction. Linear combinations of the feature

values collected from individual sensor's attractors were unable to resolve many of the damage cases.
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List of Figure Captions

Figure 1. Multivariate false nearest neighbors investigation scheme.

Figure 2. Schematic of experimental setup

Figure 3. Power spectra of Lorenz system with varying coeÆcients �

Figure 4. Progression of axial load (damage) in each of the four instrumented bolts (right)

Figure 5. Photo of composite beam (left) Close-up of joint (right).

Figure 6. Driving signal, driving attractor, and sample response attractor.

Figure 7. Mean CAAD trend with loss in axial load.

Figure 8. CAAD values for individual attractors (top row) and the two optimal discriminant coor-

dinates (bottom row) as a function of damage
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Beginning Dimension
d = 1,…3.
A       B        C       D       E
d     d-1      d-1     d-1     d-1

d-1    d        d-1    d-1     d-1

d-1   d-1        d     d-1     d-1

d-1   d-1      d-1     d      d-1

d-1   d-1      d-1    d-1       d*

d       d        d-1     d-1     d-1

d       d         d       d-1     d-1

d       d         d        d       d-1*

d       d         d        d         d*

d-1   d-1       d-1    d         d

d-1   d-1       d        d        d *

d-1    d         d        d        d *

If d > 1, add delay:
d = 1: xi(d); d=2: xi(d), xi(d+T),...

Add one (delay) coordinate at a time to 
give embedding dimension... 

A       B        C       D       E
d      d        d-1    d-1    d-1
d      d-1      d      d-1    d-1
d      d-1     d-1     d      d-1
d     d-1     d-1   d-1     d
d+1 d-1     d-1   d-1     d-1
d+1 d         d       d        d

...and test for number
of false near neighbors
with each addition. 

A       B        C       D       E
d-1    d        d       d-1    d-1
d-1    d       d-1     d       d-1
d-1    d       d-1     d-1     d
d-1   d+1   d-1      d-1    d-1
 d     d+1    d         d       d

A       B        C       D       E
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A       B        C       D       E
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d      d        d-1     d-1    d
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d     d+1     d-1     d-1   d-1
d+1 d+1    d         d       d

A       B        C       D       E
d-1      d-1    d-1     d       d
d-1      d-1   d-1     d+1   d-1
d         d       d       d+1    d

A       B        C       D       E
d      d-1      d-1    d        d
d-1    d        d-1     d       d
d-1   d-1      d        d       d
d-1   d-1      d-1    d+1    d
d-1   d-1      d-1     d      d+1
d      d          d       d+1  d+1

A       B        C       D       E
d      d          d     d-1     d-1
d      d        d-1     d       d-1
d      d        d-1    d-1     d
d+1   d       d-1    d-1     d-1
d    d+1      d-1    d-1     d-1
d+1 d+1     d        d        d

* not shown;follows same scheme

Figure 1:
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